產品分類
-
實驗室儀器
按功能分
- 提供實驗環(huán)境的設備
- 分離樣品并處理設備
- 對樣品前處理的設備
- 處理實驗器材的設備
- 保存實驗樣品用設備
- 計量儀器
- 培養(yǎng)孵育設備
- 基礎通用設備
- 通用分析儀器
- 樣品結果分析
- 1. CO2培養(yǎng)箱
- 2. 動物細胞培養(yǎng)罐
- 3. 封口用
- 4. 發(fā)芽箱
- 5. 孵育器
- 6. 發(fā)酵罐
- 7. 恒溫槽、低溫槽
- 8. 恒溫恒濕
- 9. 培養(yǎng)箱
- 10. 培養(yǎng)架
- 11. 人工氣候箱
- 12. 水浴、油浴、金屬浴
- 13. 搖床
- 14. 厭氧微需氧細胞培養(yǎng)設備
- 1. 比色計
- 2. 測厚儀
- 3. 光度計
- 4. 光譜儀
- 5. 光化學反應儀
- 6. 電參數(shù)分析儀
- 7. 檢驗分析類儀器
- 8. 瀝青檢測
- 9. 酶標儀洗板機
- 10. 凝膠凈化系統(tǒng)
- 11. 氣質聯(lián)用儀
- 12. 氣體發(fā)生裝置
- 13. 水份測定儀
- 14. 色譜類
- 15. 水質分析、電化學儀
- 16. 石油、化工產品分析儀
- 17. 實驗室管理軟件
- 18. 同位素檢測
- 19. 透視設備
- 20. 旋光儀
- 21. 濁度計
- 22. 折光儀
- 顯微鏡
- 電化學分析類
- 其他
按專業(yè)實驗室分- 化學合成
- 乳品類檢測專用儀器
- 細胞工程類
- 種子檢測專用儀器
- 病理設備
- 1. 乳品類檢測專用儀器
- 1. 細胞分析儀
- 2. 細胞培養(yǎng)用品
- 3. 細胞融合、雜交
- 1. 種子檢測專用儀器
- 層析設備
- 動物實驗設備
- 糧油檢測
- 生物類基礎儀器
- 植物土壤檢測
- 1. 動物呼吸機
- 2. 動物固定器
- 3. 仿生消化系統(tǒng)
- 1. 電泳(電源)儀、電泳槽
- 2. 分子雜交
- 3. 基因工程
- 4. PCR儀
- 5. 紫外儀、凝膠成像系統(tǒng)
- 藥物檢測分析
- 地質
- 紡織
- 分析儀器
- 農產品質量監(jiān)測
- 1. 農藥殘毒快速檢測儀
- 2. 農產品檢測試紙
- 3. 農產品檢測試藥片
- 4. 土壤、化肥快速檢測儀
- 5. 種子外觀品質分析儀
- 水產品質量安全
- 水產技術推廣
- 水生動物防疫
- 食品檢測實驗室
- 疾病預防控制中心
- 1. 計數(shù)儀
- 2. 水產品質安監(jiān)測
- 3. 水產品檢測試紙
- 4. 水產品檢測藥品
- 1. 快速檢測試劑盒
- 2. 肉類檢測儀器
- 3. 食品安全快速分析儀
- 4. 食品安全檢測箱
- 5. 食品檢測儀器配套設備
- 6. 食品安全檢測儀器
- 7. 三十合一食品安全檢測儀
- 8. 相關配置、配件
- 供水、水文監(jiān)測
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
熱銷品牌 - 工業(yè)儀器
- 戶外儀器
- 環(huán)境監(jiān)測
- 便攜式儀器
- 在線式儀器
倒置顯微鏡的使用方法
[2014/8/13]
顯微操作技術(micromanipulation technique)是指在高倍復式顯微鏡下,利用顯微操作器(micromanipulator)進行細胞或早期胚胎操作的一種方法。顯微操作器是用以控制顯微注射針在顯微鏡視野內移動的機械裝置。
顯微操作的基礎平臺--倒置研究級顯微鏡各種活細胞應用實驗,如顯微操作、細胞培養(yǎng),IVF,ICSI等.
顯微操作技術(micromanipulation technique)是指在高倍復式顯微鏡下,利用顯微操作器(micromanipulator),這是一套能控制顯微注射針在顯微鏡視野內移動的機械裝置,用來進行細胞或早期胚胎操作的一種方法。顯微操作技術包括細胞核移植、顯微注射、嵌合體技術、胚胎移植以及顯微切割等,像是桃莉羊的產制就是運用細胞核移植技術達成的;而基因轉殖(gene transfer)指的是將選殖之外源基因藉由導入體細胞并能穩(wěn)定的嵌入宿主動物之生殖細胞染色體中之一門技術,基因轉殖動物被定義為經由人為的方式將外源基因引入體內而引起基因改變之動物,并可將遺傳特質傳遞至接續(xù)的每一世代中。產制基因轉殖動物可利用基因顯微注射(gene microinjection)、胚干細胞(embryonic stem cells, ES cells)、精子載體(sperm vector)、反轉錄病毒感染(retroviral vector infection)及體細胞核移置(somatic cell nuclear transfer)等方法達成,其中顯微注射為目前應用最普遍之方法之一。顯微注射法(microinjection)是利用管尖極細(0.1至0.5 μm)的玻璃微量注射針,將選殖之外源基因片段直接注射入原核期胚或是培養(yǎng)的細胞中,然后藉由宿主基因組序列可能發(fā)生之重排(rearrangement)、刪除(deletion)、重復(duplication)或易位(translocation)等現(xiàn)象而使外源基因嵌入宿主之染色體內。這種顯微注射術的程序,需有相當精密的顯微操作設備,于制造長管尖時,需用微量吸管拉長器(micropipette puller),注射時需有固定管尖位置的微量操縱器。這種技術的長處為任何DNA在原則上均可傳入任何種類的細胞內。此法已成功的產制包括小鼠(mouse)、魚、大鼠(rat)、兔子及許多大型家畜,如牛、羊、豬等基因轉殖動物。以顯微注射法轉殖之外源基因較無長度上之限制,目前已證明數(shù)百 kb之DNA片段均可成功產制出基因轉殖動物。而其缺點為其設備經密昂貴、操作技術需要有相當時間的練習,及每次只能注射相當有限的細胞。
用于顯微注射用之顯微鏡常使用具有位相差(phasecontrast)與微分干涉差(differential interference contrast)功能之倒置顯微鏡,倒置顯微鏡組成和普通顯微鏡一樣,只不過物鏡與照明系統(tǒng)顛倒,一般正置顯微鏡之物鏡在載物臺之上,照明系統(tǒng)在下,而倒立式顯微鏡之物鏡在下與而照明系統(tǒng)在載物臺之上,倒立式顯微鏡之優(yōu)點為接物鏡與目鏡間之工作距離較長,可直接將培養(yǎng)皿之置顯微鏡操作臺上進行顯微注射等工作。傳統(tǒng)之一般普通顯微鏡無法直接觀察未經染色之透明的活細胞,為了能讓顯微注射技術觀察與操作透明的活細胞樣品,顯微鏡須使用具有位相差與微分干涉差功能之倒立式顯微鏡。位相差顯微鏡是由P.Zernike于1932年發(fā)明,并因此獲得1953年諾貝爾物理獎,這種顯微鏡最大的特點是可以觀察未經染色的透明標本和活細胞,位相差顯微鏡的基本原理是利用透明細胞檢體內部折射率各不相同,把透過標本的可見光的光程差變成振幅差,從而提高了各種結構間的對比度,得到明暗對比的效果,使的透明活細胞各種結構內部細節(jié)在亮背景視野中變得清晰可見,位相差顯微鏡之基本構造是利用位相差聚光鏡及內部位相環(huán)所構成的環(huán)狀光圈,光通過聚光鏡后,產生中空光錐,并在光線穿過檢體后發(fā)生折射,偏離了原來的光路,同時被延遲了 1/4λ(波長),如果再經過物鏡內的光延遲位環(huán)板而成增加或減少1/4λ,則光程差變?yōu)?/2λ,兩束光合軸后干涉加強,振幅增大或減下提高反差。雖然相差顯微鏡可以在透明的細胞樣品提供清析的觀察圖像,但是一般位相差顯微鏡的缺點是會有「光暈」現(xiàn)象的產生,因而導致觀察的景深受限制,無法用以觀察較厚的樣品,較厚的細胞團區(qū)域在一般位相差顯微鏡下的清稀度十分糟糕,而且邊緣常產生暈輪效果,如果觀察樣品中有超過85%以上的區(qū)域為較厚細胞時,這個問題將非常嚴重,然而顯微注射用之樣品如受精卵細胞或細胞團均具有一定厚度,造成細胞結構和邊緣無法清楚可見,因此顯微注射用的顯微鏡必須要能克服厚樣品的問題。
為解決活動樣品和厚樣品帶有「光暈」的觀察問題,1952年,Nomarski在相差顯微鏡原理的基礎上發(fā)明了微分干涉差顯微鏡(differential interference contrast microscope)。Nomarski 微分干涉差顯微鏡之優(yōu)點是能顯示結構的三維立體投影影像,與傳統(tǒng)位相差顯微鏡相比,其標本可略厚一點,折射率差別更大,故影像的立體感更強,產生類似于浮雕的效果。微分干涉差顯微鏡技術設計比相差顯微鏡要復雜得多,Nomarski DIC利用的是偏振光,有四個特殊的光學組件:偏振器(polarizer)、DIC棱鏡、DIC滑行器和檢偏器(analyzer)。偏振器直接裝在聚光系統(tǒng)的前面,使光線發(fā)生線性偏振。在聚光器中則安裝了二個楔形單軸的晶體,如石英,以光軸互相交錯的方式互相接合,稱為Wollaston棱鏡或 Nomarski棱鏡,即DIC棱鏡,此棱鏡可將每一光線分離成為二條偏振互相垂直的兩束光(x和y),二者成一小夾角,聚光器將兩束光調整成與顯微鏡光軸平行的方向。最初兩束光相位一致,在穿過標本相鄰的區(qū)域后,由于標本的厚度和折射率不同,引起了兩束光發(fā)生了光程差。在物鏡的后焦面處安裝了第二個Wollaston棱鏡,即DIC滑行器,它把兩束光波合并成一束,這時兩束光的偏振面(x和y)仍然存在。最后光束穿過第二個偏振裝置,即檢偏器,在光束形成目鏡DIC影像之前,檢偏器與偏光器的方向成直角,檢偏器將兩束垂直的光波組合成具有相同偏振面的兩束光,從而使二者發(fā)生干涉。x和y波的光程差決定著透光的多少,當光程差值為0時,沒有光穿過檢偏器;光程差值等于波長一半時,穿過的光達到最大值,于是在灰色的背景上,標本結構便呈現(xiàn)出亮暗差。為了使影像的反差達到最佳狀態(tài),觀察者可通過調節(jié)DIC滑行器的縱行微調來改變光程差,改變光程差可以改變影像的亮度。而調節(jié)DIC滑行器則可使標本的細微結構呈現(xiàn)出正或負的投影形象,通常是一側亮,而另一側暗,這便造成了標本的人為三維立體感,產生了類似大理石上的浮雕感覺。 DIC顯微鏡使細胞的內部結構,特別是一些較大的細胞器,如核、線粒體等,立體感特別強,因此適合應用于顯微操作技術。目前像基因注入、核移植、轉基因等的顯微操作常需要在這種顯微鏡下進行。
雖然Nomarski微分干涉技術可以對付一些細胞團或者組織等較厚的樣品,但它非常昂貴,并且僅僅只能應用在玻璃底的培養(yǎng)皿中,無法直接在廣為研究人員進行細胞培養(yǎng)操作之一般塑料材質的培養(yǎng)皿產生浮雕效果,此外這種技術對于顯微操作技術的所使用的樣品而言,景深還是稍嫌不足,因此在應用上遇到不少問題。有鑒于此,一些其它的可以用于觀察厚樣品的微分干涉技術也逐漸被開發(fā)出來,
目前最常用來生產基因轉殖動物的方式為:直接把重組過的 DNA 注入授精卵的原核 (pronuleus) 中,將從胚胎提供者的輸卵管中取得的授精卵移到倒立式顯微鏡上的微量注射臺上,然后利用固定吸量管 (holding pipette) 固定住,之后注射針則依序穿過 zona pellucida,oocyte membrance及male pronuleus membrane后,將 DNA 注入,注入時可以見到原核膨大。以小鼠受精卵雄原核之顯微注射為例,顯微注射所使用的受精卵之固定吸管(holding pipette)及注射針(injection needle)之制備困難,除影響操作時間外,亦是影響基因轉殖效率及基因注入后之胚存活及基因轉殖成功與否極其重要的因子。固定吸管之內、外徑分別為 30、80 μm較為適當?shù)摹o@微注射針自針尖起20 μm處之外徑為4 μm時,可獲得良好的轉殖效率。固定吸管之內徑如太小,會導致吸力不足,對受精卵操控不易,如太大,則受精卵易受傷害,影響胚之存活率。顯微注射針尖如太粗,則導致插入透明帶及原核之阻力增加,且DNA流量過多,受精卵易于裂解,太細則致針內DNA流出速率過慢,且易阻塞,而使DNA無法順利流入原核內,影響注射效率。因此進行受精卵雄原核之顯微注射時,如何制備適用之固定受精卵之吸管及顯微注射針是關乎基因轉殖效率極其重要的因素。
基因轉殖動物(transgenic animal)于目前生物及醫(yī)學研究方面之應用極為廣泛,基因轉殖小鼠一直是研究外源基因構筑型態(tài)、染色體嵌插、轉殖基因表現(xiàn)及調節(jié)之最佳模式,也是建立基因轉殖技術最好的工具,尤其是在產制基因轉殖家畜之前,如能先以小鼠進行預備試驗是求事半功倍不可或缺之過程;蜣D殖動物應用的領域可以包括研究基因的活動對致癌病毒與癌細胞的生長的影響、基因的活動與免疫細胞間的交互作用與調控的機制、研究基因對于生長的調控機制,以及生物學與遺傳學的機制,也被應用于以人類細胞作為組織及器官移植的發(fā)展方面,如基因參與體細胞、胚胎干細胞及存在各個組織的干細胞的體外誘導分化研究等等。基因轉殖動物除用于一般基礎研究外,對于制造具治療效果的蛋白質、器官移植、疫苗、毒理實驗、動物品種改良及水產養(yǎng)殖等均有很大的貢獻。雖然截至目前為止,基因轉殖之研發(fā)已有若干良好的成果,但尚有若干問題待克服,所以基因轉殖技術之應用與發(fā)展將是無可限量。
顯微操作的基礎平臺--倒置研究級顯微鏡各種活細胞應用實驗,如顯微操作、細胞培養(yǎng),IVF,ICSI等.
顯微操作技術(micromanipulation technique)是指在高倍復式顯微鏡下,利用顯微操作器(micromanipulator),這是一套能控制顯微注射針在顯微鏡視野內移動的機械裝置,用來進行細胞或早期胚胎操作的一種方法。顯微操作技術包括細胞核移植、顯微注射、嵌合體技術、胚胎移植以及顯微切割等,像是桃莉羊的產制就是運用細胞核移植技術達成的;而基因轉殖(gene transfer)指的是將選殖之外源基因藉由導入體細胞并能穩(wěn)定的嵌入宿主動物之生殖細胞染色體中之一門技術,基因轉殖動物被定義為經由人為的方式將外源基因引入體內而引起基因改變之動物,并可將遺傳特質傳遞至接續(xù)的每一世代中。產制基因轉殖動物可利用基因顯微注射(gene microinjection)、胚干細胞(embryonic stem cells, ES cells)、精子載體(sperm vector)、反轉錄病毒感染(retroviral vector infection)及體細胞核移置(somatic cell nuclear transfer)等方法達成,其中顯微注射為目前應用最普遍之方法之一。顯微注射法(microinjection)是利用管尖極細(0.1至0.5 μm)的玻璃微量注射針,將選殖之外源基因片段直接注射入原核期胚或是培養(yǎng)的細胞中,然后藉由宿主基因組序列可能發(fā)生之重排(rearrangement)、刪除(deletion)、重復(duplication)或易位(translocation)等現(xiàn)象而使外源基因嵌入宿主之染色體內。這種顯微注射術的程序,需有相當精密的顯微操作設備,于制造長管尖時,需用微量吸管拉長器(micropipette puller),注射時需有固定管尖位置的微量操縱器。這種技術的長處為任何DNA在原則上均可傳入任何種類的細胞內。此法已成功的產制包括小鼠(mouse)、魚、大鼠(rat)、兔子及許多大型家畜,如牛、羊、豬等基因轉殖動物。以顯微注射法轉殖之外源基因較無長度上之限制,目前已證明數(shù)百 kb之DNA片段均可成功產制出基因轉殖動物。而其缺點為其設備經密昂貴、操作技術需要有相當時間的練習,及每次只能注射相當有限的細胞。
用于顯微注射用之顯微鏡常使用具有位相差(phasecontrast)與微分干涉差(differential interference contrast)功能之倒置顯微鏡,倒置顯微鏡組成和普通顯微鏡一樣,只不過物鏡與照明系統(tǒng)顛倒,一般正置顯微鏡之物鏡在載物臺之上,照明系統(tǒng)在下,而倒立式顯微鏡之物鏡在下與而照明系統(tǒng)在載物臺之上,倒立式顯微鏡之優(yōu)點為接物鏡與目鏡間之工作距離較長,可直接將培養(yǎng)皿之置顯微鏡操作臺上進行顯微注射等工作。傳統(tǒng)之一般普通顯微鏡無法直接觀察未經染色之透明的活細胞,為了能讓顯微注射技術觀察與操作透明的活細胞樣品,顯微鏡須使用具有位相差與微分干涉差功能之倒立式顯微鏡。位相差顯微鏡是由P.Zernike于1932年發(fā)明,并因此獲得1953年諾貝爾物理獎,這種顯微鏡最大的特點是可以觀察未經染色的透明標本和活細胞,位相差顯微鏡的基本原理是利用透明細胞檢體內部折射率各不相同,把透過標本的可見光的光程差變成振幅差,從而提高了各種結構間的對比度,得到明暗對比的效果,使的透明活細胞各種結構內部細節(jié)在亮背景視野中變得清晰可見,位相差顯微鏡之基本構造是利用位相差聚光鏡及內部位相環(huán)所構成的環(huán)狀光圈,光通過聚光鏡后,產生中空光錐,并在光線穿過檢體后發(fā)生折射,偏離了原來的光路,同時被延遲了 1/4λ(波長),如果再經過物鏡內的光延遲位環(huán)板而成增加或減少1/4λ,則光程差變?yōu)?/2λ,兩束光合軸后干涉加強,振幅增大或減下提高反差。雖然相差顯微鏡可以在透明的細胞樣品提供清析的觀察圖像,但是一般位相差顯微鏡的缺點是會有「光暈」現(xiàn)象的產生,因而導致觀察的景深受限制,無法用以觀察較厚的樣品,較厚的細胞團區(qū)域在一般位相差顯微鏡下的清稀度十分糟糕,而且邊緣常產生暈輪效果,如果觀察樣品中有超過85%以上的區(qū)域為較厚細胞時,這個問題將非常嚴重,然而顯微注射用之樣品如受精卵細胞或細胞團均具有一定厚度,造成細胞結構和邊緣無法清楚可見,因此顯微注射用的顯微鏡必須要能克服厚樣品的問題。
為解決活動樣品和厚樣品帶有「光暈」的觀察問題,1952年,Nomarski在相差顯微鏡原理的基礎上發(fā)明了微分干涉差顯微鏡(differential interference contrast microscope)。Nomarski 微分干涉差顯微鏡之優(yōu)點是能顯示結構的三維立體投影影像,與傳統(tǒng)位相差顯微鏡相比,其標本可略厚一點,折射率差別更大,故影像的立體感更強,產生類似于浮雕的效果。微分干涉差顯微鏡技術設計比相差顯微鏡要復雜得多,Nomarski DIC利用的是偏振光,有四個特殊的光學組件:偏振器(polarizer)、DIC棱鏡、DIC滑行器和檢偏器(analyzer)。偏振器直接裝在聚光系統(tǒng)的前面,使光線發(fā)生線性偏振。在聚光器中則安裝了二個楔形單軸的晶體,如石英,以光軸互相交錯的方式互相接合,稱為Wollaston棱鏡或 Nomarski棱鏡,即DIC棱鏡,此棱鏡可將每一光線分離成為二條偏振互相垂直的兩束光(x和y),二者成一小夾角,聚光器將兩束光調整成與顯微鏡光軸平行的方向。最初兩束光相位一致,在穿過標本相鄰的區(qū)域后,由于標本的厚度和折射率不同,引起了兩束光發(fā)生了光程差。在物鏡的后焦面處安裝了第二個Wollaston棱鏡,即DIC滑行器,它把兩束光波合并成一束,這時兩束光的偏振面(x和y)仍然存在。最后光束穿過第二個偏振裝置,即檢偏器,在光束形成目鏡DIC影像之前,檢偏器與偏光器的方向成直角,檢偏器將兩束垂直的光波組合成具有相同偏振面的兩束光,從而使二者發(fā)生干涉。x和y波的光程差決定著透光的多少,當光程差值為0時,沒有光穿過檢偏器;光程差值等于波長一半時,穿過的光達到最大值,于是在灰色的背景上,標本結構便呈現(xiàn)出亮暗差。為了使影像的反差達到最佳狀態(tài),觀察者可通過調節(jié)DIC滑行器的縱行微調來改變光程差,改變光程差可以改變影像的亮度。而調節(jié)DIC滑行器則可使標本的細微結構呈現(xiàn)出正或負的投影形象,通常是一側亮,而另一側暗,這便造成了標本的人為三維立體感,產生了類似大理石上的浮雕感覺。 DIC顯微鏡使細胞的內部結構,特別是一些較大的細胞器,如核、線粒體等,立體感特別強,因此適合應用于顯微操作技術。目前像基因注入、核移植、轉基因等的顯微操作常需要在這種顯微鏡下進行。
雖然Nomarski微分干涉技術可以對付一些細胞團或者組織等較厚的樣品,但它非常昂貴,并且僅僅只能應用在玻璃底的培養(yǎng)皿中,無法直接在廣為研究人員進行細胞培養(yǎng)操作之一般塑料材質的培養(yǎng)皿產生浮雕效果,此外這種技術對于顯微操作技術的所使用的樣品而言,景深還是稍嫌不足,因此在應用上遇到不少問題。有鑒于此,一些其它的可以用于觀察厚樣品的微分干涉技術也逐漸被開發(fā)出來,
目前最常用來生產基因轉殖動物的方式為:直接把重組過的 DNA 注入授精卵的原核 (pronuleus) 中,將從胚胎提供者的輸卵管中取得的授精卵移到倒立式顯微鏡上的微量注射臺上,然后利用固定吸量管 (holding pipette) 固定住,之后注射針則依序穿過 zona pellucida,oocyte membrance及male pronuleus membrane后,將 DNA 注入,注入時可以見到原核膨大。以小鼠受精卵雄原核之顯微注射為例,顯微注射所使用的受精卵之固定吸管(holding pipette)及注射針(injection needle)之制備困難,除影響操作時間外,亦是影響基因轉殖效率及基因注入后之胚存活及基因轉殖成功與否極其重要的因子。固定吸管之內、外徑分別為 30、80 μm較為適當?shù)摹o@微注射針自針尖起20 μm處之外徑為4 μm時,可獲得良好的轉殖效率。固定吸管之內徑如太小,會導致吸力不足,對受精卵操控不易,如太大,則受精卵易受傷害,影響胚之存活率。顯微注射針尖如太粗,則導致插入透明帶及原核之阻力增加,且DNA流量過多,受精卵易于裂解,太細則致針內DNA流出速率過慢,且易阻塞,而使DNA無法順利流入原核內,影響注射效率。因此進行受精卵雄原核之顯微注射時,如何制備適用之固定受精卵之吸管及顯微注射針是關乎基因轉殖效率極其重要的因素。
基因轉殖動物(transgenic animal)于目前生物及醫(yī)學研究方面之應用極為廣泛,基因轉殖小鼠一直是研究外源基因構筑型態(tài)、染色體嵌插、轉殖基因表現(xiàn)及調節(jié)之最佳模式,也是建立基因轉殖技術最好的工具,尤其是在產制基因轉殖家畜之前,如能先以小鼠進行預備試驗是求事半功倍不可或缺之過程;蜣D殖動物應用的領域可以包括研究基因的活動對致癌病毒與癌細胞的生長的影響、基因的活動與免疫細胞間的交互作用與調控的機制、研究基因對于生長的調控機制,以及生物學與遺傳學的機制,也被應用于以人類細胞作為組織及器官移植的發(fā)展方面,如基因參與體細胞、胚胎干細胞及存在各個組織的干細胞的體外誘導分化研究等等。基因轉殖動物除用于一般基礎研究外,對于制造具治療效果的蛋白質、器官移植、疫苗、毒理實驗、動物品種改良及水產養(yǎng)殖等均有很大的貢獻。雖然截至目前為止,基因轉殖之研發(fā)已有若干良好的成果,但尚有若干問題待克服,所以基因轉殖技術之應用與發(fā)展將是無可限量。
上一篇:微型水泵選型說明
下一篇:氣相色譜和液相色譜的比較分析