-
實驗室儀器
按功能分
- 提供實驗環(huán)境的設(shè)備
- 分離樣品并處理設(shè)備
- 對樣品前處理的設(shè)備
- 處理實驗器材的設(shè)備
- 保存實驗樣品用設(shè)備
- 1. 搗碎機
- 2. 超聲波清洗器
- 3. 干燥箱
- 4. 滅菌器\消毒設(shè)備
- 5. 清洗機
- 1. 蛋類分析儀
- 2. 粉碎機
- 3. 谷物分析儀
- 4. 混勻儀
- 5. 攪拌器
- 6. 馬弗爐
- 7. 樣品制備設(shè)備
- 8. 破碎、研磨、均質(zhì)儀器
- 9. 消解
- 計量儀器
- 培養(yǎng)孵育設(shè)備
- 基礎(chǔ)通用設(shè)備
- 通用分析儀器
- 樣品結(jié)果分析
- 1. CO2培養(yǎng)箱
- 2. 動物細胞培養(yǎng)罐
- 3. 封口用
- 4. 發(fā)芽箱
- 5. 孵育器
- 6. 發(fā)酵罐
- 7. 恒溫槽、低溫槽
- 8. 恒溫恒濕
- 9. 培養(yǎng)箱
- 10. 培養(yǎng)架
- 11. 人工氣候箱
- 12. 水浴、油浴、金屬浴
- 13. 搖床
- 14. 厭氧微需氧細胞培養(yǎng)設(shè)備
- 1. 邊臺
- 2. 刨冰機
- 3. 電熱板
- 4. 輻射檢測
- 5. 干燥箱
- 6. 瓶口分配器
- 7. 水質(zhì)分析類
- 8. 水質(zhì)采樣器
- 9. 實驗臺
- 10. 溫、濕、氣壓、風速、聲音、粉塵類
- 11. 穩(wěn)壓電源(UPS)
- 12. 文件柜
- 13. 移液器
- 14. 制造水、純水、超純水設(shè)備
- 15. 制冰機
- 16. 中央臺
- 17. 真空干燥箱
- 1. 比色計
- 2. 測厚儀
- 3. 光度計
- 4. 光譜儀
- 5. 光化學反應(yīng)儀
- 6. 電參數(shù)分析儀
- 7. 檢驗分析類儀器
- 8. 瀝青檢測
- 9. 酶標儀洗板機
- 10. 凝膠凈化系統(tǒng)
- 11. 氣質(zhì)聯(lián)用儀
- 12. 氣體發(fā)生裝置
- 13. 水份測定儀
- 14. 色譜類
- 15. 水質(zhì)分析、電化學儀
- 16. 石油、化工產(chǎn)品分析儀
- 17. 實驗室管理軟件
- 18. 同位素檢測
- 19. 透視設(shè)備
- 20. 旋光儀
- 21. 濁度計
- 22. 折光儀
- 顯微鏡
- 電化學分析類
- 其他
- 1. 電源
- 2. 光照組培架
- 3. 戶外檢測儀器
- 4. 戶外分析儀器
- 5. IVF工作站配套儀器
- 6. 空氣探測儀器
- 7. 科研氣象站
- 8. 空調(diào)
- 9. 冷卻器
- 10. 配件
- 11. 其他
- 12. 溶液
- 13. 軟件
- 14. 水質(zhì)分析、電化學儀
- 15. 實驗室系統(tǒng)
- 16. 試劑
- 17. 現(xiàn)場儀表
按專業(yè)實驗室分- 化學合成
- 乳品類檢測專用儀器
- 細胞工程類
- 種子檢測專用儀器
- 病理設(shè)備
- 1. 乳品類檢測專用儀器
- 1. 細胞分析儀
- 2. 細胞培養(yǎng)用品
- 3. 細胞融合、雜交
- 1. 種子檢測專用儀器
- 層析設(shè)備
- 動物實驗設(shè)備
- 糧油檢測
- 生物類基礎(chǔ)儀器
- 植物土壤檢測
- 1. 動物呼吸機
- 2. 動物固定器
- 3. 仿生消化系統(tǒng)
- 1. 電泳(電源)儀、電泳槽
- 2. 分子雜交
- 3. 基因工程
- 4. PCR儀
- 5. 紫外儀、凝膠成像系統(tǒng)
- 藥物檢測分析
- 地質(zhì)
- 紡織
- 分析儀器
- 農(nóng)產(chǎn)品質(zhì)量監(jiān)測
- 1. 臭氧濃度分析儀
- 2. 電化學分析
- 3. 煤質(zhì)分析儀系列
- 4. 石油儀器
- 5. 成分分析儀
- 6. 植物分析儀系統(tǒng)
- 水產(chǎn)品質(zhì)量安全
- 水產(chǎn)技術(shù)推廣
- 水生動物防疫
- 食品檢測實驗室
- 疾病預(yù)防控制中心
- 1. 計數(shù)儀
- 2. 水產(chǎn)品質(zhì)安監(jiān)測
- 3. 水產(chǎn)品檢測試紙
- 4. 水產(chǎn)品檢測藥品
- 1. 快速檢測試劑盒
- 2. 肉類檢測儀器
- 3. 食品安全快速分析儀
- 4. 食品安全檢測箱
- 5. 食品檢測儀器配套設(shè)備
- 6. 食品安全檢測儀器
- 7. 三十合一食品安全檢測儀
- 8. 相關(guān)配置、配件
- 供水、水文監(jiān)測
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
-
暫無數(shù)據(jù),詳情請致電:18819137158 謝謝!
熱銷品牌 - 工業(yè)儀器
- 戶外儀器
- 環(huán)境監(jiān)測
- 便攜式儀器
- 在線式儀器
金剛石可能是未來核磁共振技術(shù)的關(guān)鍵
[2016/1/4]
Alex Pines的研究小組記錄了第一塊室溫下任意磁場和晶體取向下,金剛石中碳-13原子核的原位NMR超極化。
Alexander Pines是伯克利實驗室材料科學部和伯克利大學Glenn T. Seaborg化學教授席位的高級學院教授,在其主導的一項研究中,研究人員記錄了第一塊室溫下任意磁場和晶體取向下,金剛石中碳-13原子核的原位NMR超極化。超極化的碳-13自旋信號顯示NMR/MRI信號敏感度得到了相對于傳統(tǒng)的NMR/MRI磁體在室溫下通常可能的信號敏感度超出多個數(shù)量級的增強。此外,這種超極化是使用微波實現(xiàn)的,而不是依靠精確的磁場來進行超極化轉(zhuǎn)移。
Pines是發(fā)表在《Nature Communications》上一篇關(guān)于本研究的論文的通訊作者。該論文的標題是《金剛石中光泵浦氮空位中心的室溫原位原子核自旋超極化》。Pines研究小組的一位成員JonathanKing是該文的第一作者。
作者報告,觀察到了百分之六的體原子核自旋極化,這是一個比熱平衡大170000倍左右的核磁共振信號增強。超極化自旋信號可以通過標準NMR探針進行原位檢測,不需要來回移動樣品或者精確的晶體取向。作者認為這種新的超極化技術(shù)應(yīng)該可以使在室溫條件下對固體和液體的核磁共振研究的靈敏度得到數(shù)量級上的增強。
“我們的研究結(jié)果代表了一個與Weizmann科學研究所的Lucio Frydman和其同事在其開創(chuàng)性實驗中得到的結(jié)果相當?shù)暮舜殴舱裥盘栐鰪,但是是在金剛石中通過微波誘導動態(tài)原子核超極化,不需要精確控制磁場和晶體取向,”Pines說:“室溫超極化金剛石打開NMR/MRI極化從一個惰性、無毒、易分離的源轉(zhuǎn)移到任意樣本的可能性,這是當代NMR/MRI技術(shù)長期追求的一個目標。”
同時具有化學特異性和非破壞性的特點使NMR/MRI技術(shù)在包括化學、材料、生物和醫(yī)學等的廣泛領(lǐng)域內(nèi)成為一種不可或缺的技術(shù)。然而,它的敏感度問題仍然是一個持久的挑戰(zhàn)。NMR/MRI信號是基于電子和原子核的一種被稱為“自旋”的本征量子特性。電子和原子核可以像一個旋轉(zhuǎn)的小磁鐵棒一樣被分配一個“向上”或“向下”的方向狀態(tài)。NMR/MRI信號取決于被往一個方向極化的核自旋的大多數(shù)——即極化程度越高,信號越強。Pines和他的研究小組成員經(jīng)過幾十年的努力,已經(jīng)開發(fā)了大量的方法來超極化原子核的自旋。在過去的兩年中他們一直專注于金剛石晶體和一種稱為氮空位(NV)中心的雜質(zhì),在氮空位中心里光學和自旋自由被耦合在一起。
“當純金剛石晶體的晶格中相鄰的兩個碳原子被從晶格中刪除,留下兩個空隙,其中一個被一個氮原子填充,另一個保持空缺的時候,就得到了一個氮空位(NV)中心,”Pines解釋說。這使得在氮原子和空位之間出現(xiàn)非束縛的電子,產(chǎn)生獨特和明確的電子自旋極化態(tài)!
在之前的研究中,Pines和他的團隊發(fā)現(xiàn),低強度磁場可以用來將NV中心電子自旋極化傳遞到附近的碳-13原子核,從而產(chǎn)生超極化核。這個被稱為動態(tài)核極化的自旋轉(zhuǎn)移過程在以前就已經(jīng)被用于增強核磁共振信號,但總是在高強度磁場和低溫條件下進行。Pines和他的團隊通過在金剛石旁邊放置一個永久磁鐵消除了這些要求。
“在我們的新研究中,我們利用微波而不是磁場來匹配電子和碳-13原子核之間的能量,從而消除了一些困難的對磁場強度和對準的限制,使得我們的技術(shù)更容易使用,”King說:“另外,在我們以前的研究中,我們通過光學測量間接推斷核極化的存在,因為我們無法測試是樣品整體極化還是只有非常接近NV中心的核被極化。通過完全消除對磁場的需要,我們現(xiàn)在能夠用NMR直接測量大塊樣品。
在《Nature Communications》的文章里,Pines, King和其他共同作者說,可以有效地集成到現(xiàn)有的制造技術(shù)并創(chuàng)造高表面面積金剛石器件的超極化金剛石應(yīng)該可以為極化轉(zhuǎn)移提供一個通用的平臺。
“我們希望利用現(xiàn)有的極化轉(zhuǎn)移技術(shù)——如固體中的交叉極化和液體中的交叉弛豫,或NV中心外圍核的直接動態(tài)核極化——來得到液體和固體的高度增強核磁共振,”King說,應(yīng)該注意到,這種轉(zhuǎn)移到固體表面和液體的極化轉(zhuǎn)移之前已經(jīng)被Pines的研究團隊用激光極化Xe-129論證過!蔽覀兓诠鈱W極化NV中心的超極化技術(shù)更為強大和有效,應(yīng)該適用于任意的目標分子,包括必須保持在接近室溫條件下的生物系統(tǒng)!